
CareDB: A Context and Preference-
Aware Database System

Justin Levandoski
Microsoft Research

Mohamed Khalefa
Alexandria University

Mohamed Mokbel
University of Minnesota

2

Why a Context and Preference-Aware DBMS?

Consider a location-based restaurant finder

“Find me a restaurant for
dinner”

3

Why a Context and Preference-Aware DBMS?

•  Existing applications will return k
closest restaurants

•  Consider the following five closest
restaurants
1)  Restaurant 1:

•  Hour and a half wait
2)  Restaurant 2:

•  Does not meet my dietary restrictions
3)  Restaurant 3:

•  Way too expensive
4)  Restaurant 4:

•  Closed for remodeling
5)  Restaurant 5:

•  30-minute drive time due to accident
along route

Current Location

The answers are NOT useful
and detached from:

1.  Personal preferences (dietary
restrictions, budget)

2.  Extra contextual data (time of
day, traffic, waiting times)

4

A Context and Preference Aware Environment

User location

Restaurant waiting times

User preferences

Database

Restaurant
Data

Answer1

“Find me a
restaurant”

Answer2 Answer3

Answer4

Traffic

Input data contains user preferences and dynamic contextual information;
each type can uniquely affect the answer, be uncertain, expensive to derive,

etc.

Answer is personalized to each
querying user

Query processing must
reflect “real world”
comprises for user

wishes

5

CareDB: A Context and Preference-Aware Database

A database that is aware of
user preferences and

surrounding contextual information,
and uses this information to give

personalized query answers to the user.

6

CareDB Overview

Query
Building

Preference/Context-
Aware

Query Processing and
Optimization

Query
Answer

User
Queries

User Context/Preference
User location
User status
User salary

User preferences
……

User1 User2 Usern . . .

User Context/Preference

Data1 Data2 Datan
. . .

Data Context

CareDB

CareDB

Environmental Context
Traffic

Weather
Road Network
Transportation

……

Database Context
Restaurant waiting time

Restaurant location
Restaurant rating
Restaurant price

……

Environment
Context

Three Classes of Input to CareDB:

“Towards Context and Preference-Aware Location-Based Database Systems”, MobiDE 2009

7

CareDB Project Summary

Incomplete Skyline
(ICDE 2008)

CareDB
(MobiDE 2009)

FlexPref
(ICDE 2010)

FlexPref Demo
(SIGMOD 2010) CareDB Demo

(VLDB2010)

Uncertain Attributes
(CIKM 2010)

Expensive Attributes
(CIKM 2010)

Recommender
Systems in a DBMS
(Under Submission)

Recommender System
Benchmark
(VLDB 2011)

Location-aware
Recommender Systems

(Under Submission)

Preference Join
(ICDE 2011)

8

Outline

•  Background
•  The FlexPref Framework
•  Handling Contextual Data in CareDB
•  Handling Uncertain Data in CareDB
•  Demonstration
•  Conclusion

9

Preference Methods
SELECT *
FROM Restaurants R
WHERE R.AllowsGroups = True;

Inject	
 Preference	

Func-onality	

SELECT *
FROM Restaurants R
WHERE R.AllowsGroups = True
PREFERRING MIN R.Price,

 MAX R.Rating,
 MIN R.WaitTime,
 MIN TravelTime(User.Location, R.Location)

What	
 is	
 the	

query	
 answer?	

What preference
method evaluates the
PREFERRING clause?

10

Preference Methods
•  Quick Exercise

–  Go to Google Scholar
–  Search for papers on preference evaluation methods
–  How many results do you get back?

The	
 list	
 goes	
 on	
 and	
 on	
 and	
 on…	

Top-­‐K	
 [VLDB99]	

Skyline	
 [ICDE01]	

K-­‐Dominance	
 [SIGMOD06]	

K-­‐Frequency	
 [EDBT06]	

Top-­‐K	
 Domina-on	
 [VLDB07]	

11

Preference Evaluation in a DBMS

Layered Approach
(The Bad)

DBMS

Preference
Evaluation

Skyline implementation:
~200 lines of code
Bad Performance

Built-in Approach
(The Ugly)

DBMS

Preference Query
Processing and

Optimization

Skyline implementation:
~8000 lines of code
Good Performance

DBMS

FlexPref

Query Processing
and Optimization

FlexPref
(The Good)

Skyline implementation:
~300 lines of code for

selection and join
Good Performance

Top-K
Skyline

K-Dominance
K-Frequency
Top-K Dom

Top-K
Skyline

K-Dominance
K-Frequency
Top-K Dom

Top-K
Skyline

K-Dominance
K-Frequency

Top-K Dom

“FlexPref: A Framework for Extensible Preference Evaluation in Database Systems”, ICDE 2010

12

The FlexPref Architecture

•  FlexPref is a set of extensible relational operators
•  Examples:

FlexPref
Join

Result Result

Selec-on	
 Join	

Restaurants
Id P D R

a 2 5 6

b 3 6 8

c 5 1 7

Restaurants
Id P D R

a 2 5 6

b 3 6 8

c 5 1 7

Hotels
Id P R

d 9 9

e 4 7

f 3 2

FlexPref
Selection

MyPref MyPref

13

Writing Preference Queries in FlexPref

SELECT * FROM Restaurants R
WHERE …
PREFERRING Price P, Distance D, Rating R
USING Skyline OBJECTIVES MIN P, D, MAX R

SELECT * FROM Restaurants R
WHERE …
PREFERRING Price P, Distance D, Rating R
USING TopKDom WITH K=5 OBJECTIVES MIN P, D, MAX R

SELECT * FROM Restaurants R
WHERE …
PREFERRING Price P, Distance D, Rating R
USING TopK WITH K=5 OBJECTIVES MIN Func(P,D,R)

SELECT * FROM Restaurants R WHERE [Where_clause]
PREFERRING [Attribute List]
USING [Pref Method]
OBJECTIVES [Preference Objectives]

14

Adding a New Preference Method to FlexPref

MyPref.c

(Function
Definitions)

Query Processing
and Optimization

MyPref

FlexPref

DBMS

DefinePreference MyPref with MyPref.c

•  Adding a preference evaluation method “MyPref” to FlexPref
requires the implementation of three functions and two macros in a
separate file “MyPref.c” outside the DB engine.

  Once implemented, the preference
method is registered using a
DefinePreference command

Top-K
Skyline

K-Dominance
K-Frequency

15

FlexPref Generic Functions & Macros

PairwiseCompare(Object P, Object Q)

INPUT: Two objects P and Q
ACTION: Update the score of P
RETURN: 1 if Q can never be a preferred object

 -1 if P can never be a preferred object
 0 otherwise

IsPreferredObject(Object P, PreferenceSet S)

INPUT: A data object P and a set of preferred objects S
RETURN: True if P is a preferred object and can be added to S

 False otherwise

AddPreferredToSet(Object P, PreferenceSet S)

INPUT: A data object P and a set of preferred objects S
ACTION: Add P to S and remove or rearrange objects from S

FlexPref Macros

#define DefaultScore
Default	
 score	
 assigned	
 to	
 each	

object	
 	

#define IsTransitive
Whether	
 preference	
 func6on	

is	
 transi6ve	
 or	
 not	

16

FlexPref Operator Implementation

•  FlexPref operators written in
terms of the three generic
functions and two macros:

Input: Single Table T
Output Preference set S

Preference Set S  NULL
For each object P in T
 P.score = #DefaultScore
 for each Object Q in T
 cmp  PairwiseCompare(P,Q)
 if (cmp ==1)

 if Q is in S then remove Q
 if #isTransitive
 then discard Q from T

 if (cmp == -1)
 if #isTransitive
 then discard P from T
 read next object P

 if (IsPreferredObject(P,S))
 then AddToPreferredSet(P,S)

Return S
SELECT * FROM Restaurants
PREFERRING P, D, R
USING Skyline OBJECTIVES
MIN P, MIN D, MAX R

FlexPref
Selection

Restaurants
Id P D R

a 2 5 6

b 3 6 8

c 5 1 7

17

Fl
ex

P
re

f_
Jo

in

FlexPref Join Operation

R

SELECT * FROM Restaurants, Hotels
WHERE Restaurants.city = Hotels.city
PREFERRING H.Price P, R.Distance D, R.Rating R
USING Skyline OBJECTIVES MIN P, MIN D, MAX R

FlexPref
Selection

FlexPref
Selection

FlexPref
Selection

Join

Restaurants
Id P D R city

a 2 5 6 Miami

b 3 6 8 Miami

c 5 1 7 Seattle

d 7 2 4 Seattle

Hotels
Id P R city

d 9 9 Miami

e 4 7 Miami

f 3 2 Seattle

h 2 6 Seattle

18

Performance Analysis

•  Comparison of preference-aware join operator

~200 lines of code

~300 lines of code
~8,000 lines of code

0

5

10

15

20

25

30

35

40

1:1 10:10 20:20 30:30 40:40 50:50 60:60 70:70 80:80

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(s

ec
)

Join Ratio

Skyline

FlexPref Join

Layered Approach

Skyline Join [ICDE07]

0

2

4

6

8

10

12

14

1:1 10:10 20:20 30:30 40:40 50:50 60:60 70:70 80:80 90:90
Q

ue
ry

 E
xe

cu
tio

n
Ti

m
e

(s
ec

)
Join Ratio

K-Dominance

FlexPref Join

Layered Approach

19

Outline

•  Background
•  The FlexPref Framework
•  Handling Contextual Data in CareDB
•  Handling Uncertain Data in CareDB
•  Demonstration
•  Conclusion

20

Contextual Data

•  Data retrieved in “real time” during preference query
•  Likely retrieved from third party (e.g., web, “cloud”)

CareDB

“Find me a restaurant for dinner”

Local
Restaurant

Data

Weather Driving
Directions

“Preference Query Processing over Expensive Attributes”, CIKM 2010

21

Contextual Data: Expensive Attributes

Query Processor

•  Contextual data is expensive to retrieve relative to local data
•  Experiment implemented in PostgreSQL prototype

Disk

8K Page “Hot”	
 8K	
 page	

From	
 buffer	

4.7	
 μsec	

“Cold”	
 8K	
 page	

from	
 disk	

27	
 msec	

From	
 3rd	
 party	
 web	
 service	

502	
 msec	

Order of magnitude difference

Single
drive time
attribute

Memory	

22

Outline

•  Background
•  The FlexPref Framework
•  Handling Contextual Data in CareDB
•  Handling Uncertain Data in CareDB
•  Demonstration
•  Conclusion

23

Contextual Data: Uncertain Data

Third party restaurant
prices reported as range,
e.g., $15-$20

Driving time reported with error,
e.g., 3 minutes [+/- 1 min]

24

Contextual Data: Handling Uncertain Data
•  Some attributes represented as range

Restaurants
Id Price Dist Rating

a 5-10 5 6

b 7-15 6 8

c 20-30 1 7

d 15-25 2 4

•  Answers are probabilistic

Answers
Id Preference Probability

a 75%

b 50%

SELECT * FROM Restaurants
PREFERRING P, D, R
USING Skyline OBJECTIVES MIN
Price, MIN Dist, MAX Rating

•  The UPref framework:

UPref

Input

System Parameters

Output
Threshold T: All answers must have probability > T

Tolerance R: Allowed probability calculation error

Preference query P

Answer to P with preference
probability:

(1)  Greater than or equal to T
(2)  Calculated within error R

"Preference Query Processing for Uncertain Data", CIKM 2010 / TKDE (Under Submission)

25

Outline

•  Background
•  The FlexPref Framework
•  Handling Contextual Data in CareDB
•  Handling Uncertain Data in CareDB
•  Demonstration
•  Conclusion

26

CareDB Prototype Demonstration

"CareDB: A Context and Preference-Aware Location-Based Database System", VLDB 2010

Full video demonstrating the CareDB is available
online:

 http://www.cs.umn.edu/~justin/publications.html

27

Outline

•  Background
•  The FlexPref Framework
•  Handling Contextual Data in CareDB
•  Handling Uncertain Data in CareDB
•  Demonstration
•  Conclusion

28

Summary

29

Thank You

Questions

30

Extra Slides

31

Definition of Context

“Any information that can be used to characterize the
situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction

between a user and an application, including the user
and application themselves.” [Key, 2001]

32

Embedding Preference in a DBMS

•  Notion of “preference” is subjective
–  Each method challenges notion of “preferred”
–  No limit to the number of proposed methods!
–  We would like to support all methods in CareDB

•  How do we embed these methods in a DBMS?
–  Must handle arbitrary queries

•  Selection over single table
•  Data may reside in multiple tables
•  Data may be sorted

–  How do we do this efficiently and in a scalable manner?

33

Implementing Preference Methods in a DBMS

The Layered Approach
Preference Evaluation

Top-K
Skyline

K-Dominance
K-Frequency
Top-K Dom

DBMS

DBMS	
 is	
 a	

“black	
 box”	
 to	

the	
 preference	

method	

Severe	
 performance	
 limitaFons:	
 	

1.  Evaluate	
 SQL	
 query	

2.  Evaluate	
 preference	
 funcFon	

DBMS	
 knows	

nothing	
 about	

semanFcs	
 of	

preference	
 method	

Almost	
 all	
 proposed	

algorithms	
 take	
 this	

approach	

34

Implementing Preference Methods in a DBMS

The Built-In Approach

Query Processor

DBMS

Index

Top-K
Single-Table Join

Index Optimizations

Skyline
Join Single-table

Index Optimizations

…	

Each method
implemented in a
custom manner in
query processor.

Very little work in
this area: studied
for top-k, but most
implementations
take “layered”
approach.

Must figure out how to
couple preference
functionality with
relational operators
(selection, join, etc.)…
not easy!

K-Dominance
Join Single-table

Index Optimizations

35

Implementing Preference Methods in a DBMS

The Layered Approach	

•  Simplicity: easy to implement
•  Limited Efficiency: cannot interact with

DBMS internals, thus no query optimization

The	
 Built-­‐In	
 Approach	
 	

•  Efficient: methods tightly coupled with

DBMS
•  Infeasible: cannot provide custom

implementation for every preference method

36

The FlexPref Architecture

FlexPref

Query Processor

DBMS

Index

FlexPref

Top-K
Skyline

K-Dominance
K-Frequency

Top-K Dom

Modify query processor
only once

Specific preference
method code
implemented outside the
DBMS query processor.

Preference method
automatically coupled with
database operators (join,
selection, etc)

Orders of
magnitude less
code than built-in
approach

Comparable
performance to
built-in approach

"FlexPref: A Framework for Extensible Preference Evaluation in Database Systems", ICDE 2010

37

FlexPref Sorted List Operator

StopSortedEval(Set P, Object O, Object F)
INPUT: A set of partial objects P and two virtual objects
 O and F
ACTION: Update objects in P, until it is sufficient to perform
 preference evaluation

FlexPref
SortedList

Price
Id P

a 2

b 3

c 5

d 6

Distance
Id D

c 1

a 5

d 6

b 7

Rating
Id R

a 6

c 7

b 8

d 9

P
Id P D R

a 2 5 6

c 1

b 3

O
P D R

3 5 6

Partial objects P and virtual
objects O and F after reading
five values

F
P D R

2 1 6

Generic Steps
Average case: DN/2 = O(N)

38

FlexPref: Query Optimization

•  Why optimize?

σ type=‘red

 type=‘blue’

Join

R S

Join

R S

SELECT * FROM R, S
WHERE R.id = S.id AND
 R.type = ‘blue’ AND
 S.type = ‘red’;

N items M items

σ type=‘blue’ σ type=‘red’

N items M items

O(NM)

2N items

O(N)

N/10 items

O(N) O(M)

M/20 items

We study the three fundamental
properties of FlexPref necessary for
query optimization:

Algebraic properties

Cost

Cardinality estimation

39

FlexPref Theoretical Framework Examples

•  Example 1: Symmetric dominance
A Implies

Methods exhibiting symmetric dominance not allowed

•  Example 2: Conditional Preferences

Flexpref framework does not support semantics of
conditional preferences in its PREFERRING clause

“I prefer cheap Mexican restaurants when it is sunny”

“I prefer expensive French restaurants when rainy”

•  Example 3: Irreflexive, asymmetric, transitive dominance

B B A

A

B

F

C

C

G

Flexpref supports preference methods that generate
strict partial order

40

Preference Queries Over Expensive Attributes

SELECT *
FROM Restaurants R
PREFERRING MIN R.Price, MIN R.Distance, MAX R.Rating

Stored locally in DBMS

•  Preference queries with a mix of “local” and “expensive”
attributes

•  Goal: retrieve the least amount of expensive attributes

Restaurants

Id Price Distance Rating

a 2

b 3

c 5

41

Contextual Data

•  You cannot “download” this data
•  Data may change from query to query
•  Legal reasons - from API terms:

http://www.yelp.com/developers/documentation/faq

“You may not cache, store,
analyze or otherwise use Yelp

content except for real-time use.”

42

Preference Query Processing Over Expensive Attributes

Phase	
 I:	

Ini-al	
 Answers	

Expensive	
 A]ribute	

Requests	

Dataset
D

D Phase	
 II:	

Pruning	

Phase	
 III:	

Cleaning	

D - L

Final	
 Preference	

Answer	

Pruned
Objects

L
Guaranteed Preference

Answers

Random Access
for objects in S Range

Access

Random
Access

"Preference Query Evaluation over Expensive Attributes", CIKM 2010

43

Multi-Objective Query Experiment

0

50

100

150

200

250

300

350

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

R
un

tim
e

(s
ec

)

Data Sizes

Our Framework
Optimal

44

Future Research Directions – Long Term

•  Geo-social systems (Application)
–  Build a scalable framework to share and analyze user-generated and

geo-tagged multimedia data in social networking environments

•  Real-time recommender systems (Application)
–  Adapt existing, high-quality recommendation techniques to new dynamic

environments where “recommendations” change rapidly (e.g., social
network data, online news/blog posts).

•  Data management anywhere (Platform)
–  Explore system architectures to integrate and perform query processing

over existing and emerging disparate data sources (e.g., web services,
Amazon Mechanical Turk, local data).

