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Why a Context and Preference-Aware DBMS? 

Consider a location-based restaurant finder 

“Find me a restaurant for 
dinner” 
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Why a Context and Preference-Aware DBMS? 

•  Existing applications will return k 
closest restaurants 

•  Consider the following five closest 
restaurants 
1)  Restaurant 1: 

•  Hour and a half wait 
2)  Restaurant 2: 

•  Does not meet my dietary restrictions 
3)  Restaurant 3: 

•  Way too expensive 
4)  Restaurant 4: 

•  Closed for remodeling 
5)  Restaurant 5: 

•  30-minute drive time due to accident 
along route 

Current Location 

The answers are NOT useful 
and detached from: 

1.  Personal preferences (dietary 
restrictions, budget) 

2.  Extra contextual data (time of 
day, traffic, waiting times) 
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A Context and Preference Aware Environment 

User location 

Restaurant waiting times 

User preferences 

Database 

Restaurant 
Data 

Answer1 

“Find me a 
restaurant” 

Answer2 Answer3 

Answer4 

Traffic 

Input data contains user preferences and dynamic contextual information; 
each type can uniquely affect the answer, be uncertain, expensive to derive, 

etc. 

Answer is personalized to each 
querying user 

Query processing must 
reflect “real world” 
comprises for user 

wishes 
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CareDB: A Context and Preference-Aware Database 

A database that is aware of  
user preferences and  

surrounding contextual information,  
and uses this information to give 

personalized query answers to the user. 
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CareDB Overview 

Query 
Building 

Preference/Context-
Aware 

Query Processing and 
Optimization 

Query 
Answer 

User 
Queries 

User Context/Preference 
User location  
User status 
User salary 

User preferences 
…… 

User1 User2 Usern . . . 

User Context/Preference 

Data1 Data2 Datan 
. . . 

Data Context 

CareDB 

CareDB 

Environmental Context 
Traffic  

Weather 
Road Network 
Transportation 

…… 

Database Context 
Restaurant waiting time 

Restaurant location 
Restaurant rating 
Restaurant price 

…… 

Environment 
Context 

Three Classes of Input to CareDB: 

“Towards Context and Preference-Aware Location-Based Database Systems”, MobiDE 2009 
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CareDB Project Summary 

Incomplete Skyline 
(ICDE 2008) 

CareDB 
(MobiDE 2009) 

FlexPref 
(ICDE 2010) 

FlexPref Demo 
(SIGMOD 2010) CareDB Demo 

(VLDB2010 ) 

Uncertain Attributes 
(CIKM 2010 ) 

Expensive Attributes 
(CIKM 2010 ) 

Recommender 
Systems in a DBMS 
(Under Submission) 

Recommender System 
Benchmark 
(VLDB 2011) 

Location-aware 
Recommender Systems 

(Under Submission) 

Preference Join 
(ICDE 2011 ) 
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Outline 

•  Background 
•  The FlexPref Framework 
•  Handling Contextual Data in CareDB 
•  Handling Uncertain Data in CareDB 
•  Demonstration 
•  Conclusion 
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Preference Methods 
SELECT *  
FROM   Restaurants R 
WHERE  R.AllowsGroups = True; 

Inject	
  Preference	
  
Func-onality	
  

SELECT  * 
FROM   Restaurants R 
WHERE  R.AllowsGroups = True 
PREFERRING  MIN R.Price, 

  MAX R.Rating, 
  MIN R.WaitTime, 
  MIN TravelTime(User.Location, R.Location)  

What	
  is	
  the	
  
query	
  answer?	
  

What preference 
method evaluates the 
PREFERRING clause? 
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Preference Methods 
•  Quick Exercise 

–  Go to Google Scholar 
–  Search for papers on preference evaluation methods 
–  How many results do you get back? 

The	
  list	
  goes	
  on	
  and	
  on	
  and	
  on…	
  
Top-­‐K	
  [VLDB99]	
  

Skyline	
  [ICDE01]	
  

K-­‐Dominance	
  [SIGMOD06]	
  

K-­‐Frequency	
  [EDBT06]	
  

Top-­‐K	
  Domina-on	
  [VLDB07]	
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Preference Evaluation in a DBMS 

Layered Approach 
(The Bad) 

DBMS 

Preference 
Evaluation 

Skyline implementation:  
~200 lines of code 
Bad Performance 

Built-in Approach 
(The Ugly) 

DBMS 

Preference Query 
Processing and 

Optimization 

Skyline implementation:  
~8000 lines of code 
Good Performance 

DBMS 

FlexPref 

Query Processing 
and Optimization 

FlexPref 
(The Good) 

Skyline implementation:  
~300 lines of code for 

selection and join 
Good Performance 

Top-K 
Skyline 

K-Dominance 
K-Frequency 
Top-K Dom 

Top-K 
Skyline 

K-Dominance 
K-Frequency 
Top-K Dom 

Top-K 
Skyline 

K-Dominance 
K-Frequency 

Top-K Dom 

“FlexPref: A Framework for Extensible Preference Evaluation in Database Systems”, ICDE 2010 
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The FlexPref Architecture 

•  FlexPref is a set of extensible relational operators 
•  Examples: 

FlexPref 
Join 

Result Result 

Selec-on	
   Join	
  

Restaurants 
Id P D R 

a 2 5 6 

b 3 6 8 

c 5 1 7 

Restaurants 
Id P D R 

a 2 5 6 

b 3 6 8 

c 5 1 7 

Hotels 
Id P R

d 9 9

e 4 7

f 3 2

FlexPref 
Selection 

MyPref MyPref 
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Writing Preference Queries in FlexPref 

SELECT * FROM Restaurants R  
WHERE … 
PREFERRING Price P, Distance D, Rating R 
USING Skyline OBJECTIVES MIN P, D, MAX R 

SELECT * FROM Restaurants R 
WHERE … 
PREFERRING Price P, Distance D, Rating R 
USING TopKDom WITH K=5 OBJECTIVES MIN P, D, MAX R 

SELECT * FROM Restaurants R 
WHERE … 
PREFERRING Price P, Distance D, Rating R 
USING TopK WITH K=5 OBJECTIVES MIN Func(P,D,R) 

SELECT * FROM Restaurants R WHERE [Where_clause] 
PREFERRING [Attribute List] 
USING [Pref Method] 
OBJECTIVES [Preference Objectives] 
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Adding a New Preference Method to FlexPref 

MyPref.c 

(Function 
Definitions) 

Query Processing 
and Optimization 

MyPref 

FlexPref 

DBMS 

DefinePreference MyPref with MyPref.c 

•  Adding a preference evaluation method “MyPref” to FlexPref 
requires the implementation of three functions and two macros in a 
separate file “MyPref.c” outside the DB engine.  

  Once implemented, the preference 
method is registered using a 
DefinePreference command 

Top-K 
Skyline 

K-Dominance 
K-Frequency 
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FlexPref Generic Functions & Macros 

PairwiseCompare(Object P, Object Q) 

INPUT:   Two objects P and Q 
ACTION: Update the score of P  
RETURN: 1 if Q can never be a preferred object 

 -1 if P can never be a preferred object 
  0 otherwise 

IsPreferredObject(Object P, PreferenceSet S) 

INPUT:   A data object P and a set of  preferred objects S 
RETURN: True if P is a preferred object and can be added to S  

  False otherwise 

AddPreferredToSet(Object P, PreferenceSet S) 

INPUT:   A data object P and a set of  preferred objects S 
ACTION: Add P to S and remove or rearrange objects from S 

FlexPref Macros 

#define DefaultScore 
Default	
  score	
  assigned	
  to	
  each	
  
object	
  	
  
#define IsTransitive 
Whether	
  preference	
  func6on	
  
is	
  transi6ve	
  or	
  not	
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FlexPref Operator Implementation 

•  FlexPref operators written in 
terms of the three generic 
functions and two macros: 

Input: Single Table T 
Output Preference set S 

Preference Set S  NULL 
For each object P in T 
   P.score = #DefaultScore 
   for each Object Q in T 
     cmp  PairwiseCompare(P,Q) 
     if (cmp ==1)  

 if Q is in S then remove Q 
 if #isTransitive  
    then discard Q from T 

     if (cmp == -1) 
 if #isTransitive  
    then discard P from T 
 read next object P 

     if (IsPreferredObject(P,S))  
 then AddToPreferredSet(P,S) 

Return S 
SELECT * FROM Restaurants  
PREFERRING P, D, R 
USING Skyline OBJECTIVES 
MIN P, MIN D, MAX R 

FlexPref 
Selection 

Restaurants 
Id P D R 

a 2 5 6 

b 3 6 8 

c 5 1 7 
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Fl
ex

P
re

f_
Jo

in
 

FlexPref Join Operation 

R 

SELECT * FROM Restaurants, Hotels 
WHERE Restaurants.city = Hotels.city 
PREFERRING H.Price P, R.Distance D, R.Rating R  
USING Skyline OBJECTIVES MIN P, MIN D, MAX R 

FlexPref 
Selection 

FlexPref 
Selection 

FlexPref 
Selection 

Join 

Restaurants 
Id P D R city 

a 2 5 6 Miami 

b 3 6 8 Miami 

c 5 1 7 Seattle 

d 7 2 4 Seattle 

Hotels 
Id P R city 

d 9 9 Miami 

e 4 7 Miami 

f 3 2 Seattle 

h 2 6 Seattle 
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Performance Analysis 

•  Comparison of preference-aware join operator 

~200 lines of code 

~300 lines of code 
~8,000 lines of code 
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Outline 

•  Background 
•  The FlexPref Framework 
•  Handling Contextual Data in CareDB 
•  Handling Uncertain Data in CareDB 
•  Demonstration 
•  Conclusion 
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Contextual Data 

•  Data retrieved in “real time” during preference query 
•  Likely retrieved from third party (e.g., web, “cloud”) 

CareDB 

“Find me a restaurant for dinner” 

Local 
Restaurant 

Data 

Weather Driving 
Directions 

“Preference Query Processing over Expensive Attributes”, CIKM 2010 
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Contextual Data: Expensive Attributes 

Query Processor 

•  Contextual data is expensive to retrieve relative to local data 
•  Experiment implemented in PostgreSQL prototype 

Disk 

8K Page “Hot”	
  8K	
  page	
  
From	
  buffer	
  

4.7	
  μsec	
  

“Cold”	
  8K	
  page	
  
from	
  disk	
  

27	
  msec	
  

From	
  3rd	
  party	
  web	
  service	
  

502	
  msec	
  

Order of magnitude difference 

Single 
drive time 
attribute 

Memory	
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Outline 

•  Background 
•  The FlexPref Framework 
•  Handling Contextual Data in CareDB 
•  Handling Uncertain Data in CareDB 
•  Demonstration 
•  Conclusion 
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Contextual Data: Uncertain Data  

Third party restaurant 
prices reported as range, 
e.g., $15-$20 

Driving time reported with error, 
e.g., 3 minutes [+/- 1 min] 
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Contextual Data: Handling Uncertain Data  
•  Some attributes represented as range 

Restaurants 
Id Price Dist Rating 

a 5-10 5 6 

b 7-15 6 8 

c 20-30 1 7 

d 15-25 2 4 

•  Answers are probabilistic 

Answers 
Id Preference Probability 

a 75% 

b 50% 

SELECT * FROM Restaurants  
PREFERRING P, D, R 
USING Skyline OBJECTIVES MIN 
Price, MIN Dist, MAX Rating 

•  The UPref framework: 

UPref 

Input 

System Parameters 

Output 
Threshold T: All answers must have probability > T 

Tolerance R: Allowed probability calculation error 

Preference query  P 

Answer to P with preference 
probability: 

(1)  Greater than or equal to T 
(2)  Calculated within error R  

"Preference Query Processing for Uncertain Data", CIKM 2010 / TKDE (Under Submission) 
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Outline 

•  Background 
•  The FlexPref Framework 
•  Handling Contextual Data in CareDB 
•  Handling Uncertain Data in CareDB 
•  Demonstration 
•  Conclusion 
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CareDB Prototype Demonstration 

"CareDB: A Context and Preference-Aware Location-Based Database System", VLDB 2010 

Full video demonstrating the CareDB is available 
online: 

 http://www.cs.umn.edu/~justin/publications.html 
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Outline 

•  Background 
•  The FlexPref Framework 
•  Handling Contextual Data in CareDB 
•  Handling Uncertain Data in CareDB 
•  Demonstration 
•  Conclusion 
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Summary 
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Thank You 

Questions 
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Extra Slides 
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Definition of Context 

“Any information that can be used to characterize the 
situation of an entity. An entity is a person, place, or 
object that is considered relevant to the interaction 

between a user and an application, including the user 
and application themselves.” [Key, 2001] 



32 

Embedding Preference in a DBMS 

•  Notion of “preference” is subjective 
–  Each method challenges notion of “preferred” 
–  No limit to the number of proposed methods! 
–  We would like to support all methods in CareDB 

•  How do we embed these methods in a DBMS? 
–  Must handle arbitrary queries 

•  Selection over single table 
•  Data may reside in multiple tables 
•  Data may be sorted 

–  How do we do this efficiently and in a scalable manner? 



33 

Implementing Preference Methods in a DBMS 

The Layered Approach 
Preference Evaluation 

Top-K 
Skyline 

K-Dominance 
K-Frequency 
Top-K Dom 

DBMS 

DBMS	
  is	
  a	
  
“black	
  box”	
  to	
  
the	
  preference	
  
method	
  

Severe	
  performance	
  limitaFons:	
  	
  
1.  Evaluate	
  SQL	
  query	
  
2.  Evaluate	
  preference	
  funcFon	
  

DBMS	
  knows	
  
nothing	
  about	
  
semanFcs	
  of	
  
preference	
  method	
  

Almost	
  all	
  proposed	
  
algorithms	
  take	
  this	
  
approach	
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Implementing Preference Methods in a DBMS 

The Built-In Approach 

Query Processor 

DBMS 

Index 

Top-K 
Single-Table Join 

Index Optimizations 

Skyline 
Join Single-table 

Index Optimizations 

…	
  

Each method 
implemented in a 
custom manner in 
query processor.  

Very little work in 
this area: studied 
for top-k, but most 
implementations 
take “layered” 
approach. 

Must figure out how to 
couple preference 
functionality with 
relational operators 
(selection, join, etc.)…
not easy! 

K-Dominance 
Join Single-table 

Index Optimizations 
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Implementing Preference Methods in a DBMS 

The Layered Approach	
  
•  Simplicity: easy to implement 
•  Limited Efficiency: cannot interact with 

DBMS internals, thus no query optimization 

The	
  Built-­‐In	
  Approach	
  	
  
•  Efficient: methods tightly coupled with 

DBMS 
•  Infeasible: cannot provide custom 

implementation for every preference method 
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The FlexPref Architecture 

FlexPref 

Query Processor 

DBMS 

Index 

FlexPref 

Top-K 
Skyline 

K-Dominance 
K-Frequency 

Top-K Dom 

Modify query processor 
only once 

Specific preference 
method code 
implemented outside the 
DBMS query processor. 

Preference method 
automatically coupled with 
database operators (join, 
selection, etc) 

Orders of 
magnitude less 
code than built-in 
approach 

Comparable 
performance to 
built-in approach 

"FlexPref: A Framework for Extensible Preference Evaluation in Database Systems", ICDE 2010 
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FlexPref Sorted List Operator 

StopSortedEval(Set P, Object O, Object F) 
INPUT: A set of partial objects P and two virtual  objects 
               O and F 
ACTION: Update objects in P, until it is sufficient to perform 
                  preference  evaluation 

FlexPref 
SortedList 

Price 
Id P

a 2

b 3

c 5

d 6

Distance 
Id D 

c 1 

a 5 

d 6 

b 7 

Rating 
Id R 

a 6 

c 7 

b 8 

d 9 

P 
Id P D R

a 2 5 6 

c 1 

b 3 

O 
P D R

3 5 6 

Partial objects P and virtual 
objects O and F after reading 
five values  

F 
P D R

2 1 6 

Generic Steps 
Average case: DN/2 = O(N) 
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FlexPref: Query Optimization 

•  Why optimize? 

σ type=‘red 

      type=‘blue’ 

Join 

R S 

Join 

R S 

SELECT * FROM R, S 
WHERE R.id = S.id AND 
      R.type = ‘blue’ AND 
      S.type = ‘red’; 

N items M items 

σ type=‘blue’ σ type=‘red’ 

N items M items 

O(NM) 

2N items 

O(N) 

N/10 items 

O(N) O(M) 

M/20 items 

We study the three fundamental 
properties of FlexPref necessary for 
query optimization: 

Algebraic properties 

Cost 

Cardinality estimation 
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FlexPref Theoretical Framework Examples 

•  Example 1: Symmetric dominance 
A Implies 

Methods exhibiting symmetric dominance not allowed 

•  Example 2: Conditional Preferences 

Flexpref framework does not support semantics of 
conditional preferences in its PREFERRING clause 

“I prefer cheap Mexican restaurants when it is sunny” 

“I prefer expensive French restaurants when rainy” 

•  Example 3: Irreflexive, asymmetric, transitive dominance 

B B A

A

B

F 

C

C

G

Flexpref supports preference methods that generate 
strict partial order 
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Preference Queries Over Expensive Attributes 

SELECT *  
FROM   Restaurants R 
PREFERRING MIN R.Price, MIN R.Distance, MAX R.Rating 

Stored locally in DBMS 

•  Preference queries with a mix of “local” and “expensive” 
attributes 

•  Goal: retrieve the least amount of expensive attributes 

Restaurants 

Id Price Distance Rating 

a 2 

b 3 

c 5 
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Contextual Data 

•  You cannot “download” this data 
•  Data may change from query to query 
•  Legal reasons - from               API terms: 

http://www.yelp.com/developers/documentation/faq 

“You may not cache, store, 
analyze or otherwise use Yelp 

content except for real-time use.” 
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Preference Query Processing Over Expensive Attributes 

Phase	
  I:	
  
Ini-al	
  Answers	
  

Expensive	
  A]ribute	
  
Requests	
  

Dataset 
D 

D Phase	
  II:	
  
Pruning	
  

Phase	
  III:	
  
Cleaning	
  

D - L 

Final	
  Preference	
  
Answer	
  

Pruned 
Objects 

L 
Guaranteed Preference 

Answers 

Random Access 
for objects in S Range 

Access 

Random 
Access 

"Preference Query Evaluation over Expensive Attributes", CIKM 2010 
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Multi-Objective Query Experiment 
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Future Research Directions – Long Term 

•  Geo-social systems (Application) 
–  Build a scalable framework to share and analyze user-generated and 

geo-tagged multimedia data in social networking environments 

•  Real-time recommender systems (Application) 
–  Adapt existing, high-quality recommendation techniques to new dynamic 

environments where “recommendations” change rapidly (e.g., social 
network data, online news/blog posts). 

•  Data management anywhere (Platform) 
–  Explore system architectures to integrate and perform query processing 

over existing and emerging disparate data sources (e.g., web services, 
Amazon Mechanical Turk, local data). 


