
Efficient Algorithms for Recommending Top-k Items and
Packages

Mohammad Khabbaz, Min Xie, Laks V.S. Lakshmanan
Department of Computer Science, University of British Columbia

{mkhabbaz,minxie,laks}@cs.ubc.ca

ABSTRACT
Recommender systems use methods such as collaborative filtering
in order to make personalized recommendations to users. Collab-
orative filtering has become a prominent approach for making pre-
dictions and personalized ranking. It forms the core business of
companies such as Amazon and Netflix. Many sophisticated al-
gorithms have been proposed and much effort has been devoted
to improving the accuracy of predictions. Most of this research
has been concerned with what we regard as first generation rec-
ommender systems. Ever since the database community got in-
terested in recommender systems, people have begun researching
questions related to flexibility and functionality. In this paper, we
propose an integrated framework to review and explain some of the
recent work conducted by our group to address some of these ques-
tions. We provide efficient methods for updating recommendation
models and computing top-k recommendations. In addition to rec-
ommending individual items, we propose methods to recommend
packages subject to user defined constraints. We refer to this inte-
grated framework as TopRecs+. Our goal is to design an efficient,
scalable and flexible recommender system for the next generation
suite of applications.

1. INTRODUCTION
Recommender systems use methods such as collaborative filter-

ing in order to make personalized recommendations to users. Col-
laborative filtering has become a prominent approach for making
predictions and personalized ranking. It forms the core business
of companies such as Amazon and Netflix. Many sophisticated al-
gorithms have been proposed and much effort has been devoted to
improving the accuracy of predictions[1]. Most of this research
has been concerned with what we regard as first generation recom-
mender systems.

Ever since the database community got interested in recommend-
er systems, people have begun investigating questions related to ef-
ficiency, scalability, flexibility and functionality [6, 17]. Following
this line of work, our group in UBC has initiated several projects to
push the envelope on recommender systems by considering flexible
recommender systems which can efficiently compute top-𝑘 items

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

within their framework [16] and using recommender systems to de-
sign packages subject to user specified constraints [9, 10].

Many of the recommendation algorithms, while highly accurate,
have scalability issues. The number of items managed by modern
information systems is growing rapidly. Therefore, scalability is
one of the serious issues for future generation recommender sys-
tems. Recommendation methods try to capture personalized pat-
terns in user feedback data by making assumptions and keeping
dense summaries of data. User feedback is typically represented in
the form of a sparse matrix that stores existing ratings of users on
items. Any item recommendation process has two steps: (1) an
off-line training phase that captures personalized profiles (either as
a model or as a similarity matrix); (2) an online recommendation
generation process that uses the latest up-to-date model or simi-
larity matrix to return top-𝑘 recommendations for a user. Any ap-
proach for improving scalability of item recommendation needs to
pay attention to both profile building and recommendation genera-
tion (Section 2). In addition to efficiency and scalability, an impor-
tant limitation of classical recommender systems is that they only
provide recommendations consisting of single items. It has been
recognized that several applications call for package recommenda-
tions consisting of sets, lists or other collections. E.g., in trip plan-
ning [9, 10], a user is interested in suggestions for a set of places
(POIs) to visit. If the recommender system only provides a ranked
list of POIs, the user has to manually figure out the most suitable
set of POIs, which is often non-trivial as there may be a cost to
visiting each POI (time, price, etc.), and the user may want the
overall cost of all POIs to be less than a cost budget. Furthermore,
some additional constraints such as “no more than 3 museums in a
package”, “not more than two parks”, “the total distance covered in
visiting all POIs in a package should be ≤ 10 km.” might render the
manual configuration process even more tedious and time consum-
ing. Another application which needs package recommendation is
music list generation [15], where the system needs to recommend
users with lists of songs called playlists, and users may have a con-
straint on the overall time for listening to these songs, and possibly
constraints on the diversity of songs in the list. So in these appli-
cations, there is a natural need for identifying top-𝑘 packages for
recommending the users with high quality packages which satisfy
all the constraints.

1.1 TopRecs+
We believe that the next generation recommender systems should

be efficient, scalable, and flexible enough to be tailed to different
applications and users’ customization requests such as the ability to
compose packages and other collections, and enforce user-specified
constraints. In Figure 1, we show the architecture of our envisioned
next generation recommender system that we call TopRecs+.

In TopRecs+, the recommendation engine can choose to recom-

Rating
Matrix

Item Recommendation Process

Item
Metadata

Package
Recommendation

Process

Users
Similarity Matrix

Top-k Item

Recommendation

Algorithm

Top-k

Items

Top-k

Packages

TopRecs
+

Figure 1: Next Generation Recommender System

mend either top items or top packages depending on the applica-
tion and user requests. The item recommendation engine can lever-
age the user item rating matrix to efficiently maintain the item-item
similarity matrix, then based on this similarity matrix, an efficient
and scalable top-𝑘 item recommendation algorithm can provide
users with the set of 𝑘 most interesting items [16]. On the other
hand, based on the items generated by the item recommendation
engine, combined with metadata information (such as price, type
and etc.) associated with each item, the top-𝑘 package recommen-
dation engine can return top-𝑘 packages that users will be interested
in [9, 10].

2. TOP-𝐾 ITEM RECOMMENDATION
Predicting personalized scores of individual items for users is

the core task of most recommendation algorithms. We follow item-
based collaborative filtering (CF) [4], which is used widely in re-
search and in practice [13, 5]. In CF, input data is typically repre-
sented as a sparse 𝑛 × 𝑚 matrix(𝑅) of user ratings on items. An
entry 𝑟𝑖𝑗 shows the existing rating of user 𝑢𝑖 on item 𝑣𝑗 . The main
task is to predict the unknown ratings using the existing ones. Item-
based CF computes and maintains an item-item similarity matrix
using the existing ratings in 𝑅. Pearson correlation coefficient [11],
is one of the popular choices for calculating item similarities. In
item-based CF, the unknown rating ⌢

𝑟 𝑖𝑗 , of 𝑢𝑖 on 𝑣𝑗 , is predicted
by taking the weighted average of ratings of 𝑢𝑖 on 𝑁 most similar
items to 𝑣𝑗 . Equation 1 shows how existing ratings are aggregated
to calculate ⌢

𝑟 𝑖𝑗 where 𝑁(𝑣𝑗 , 𝑢𝑖) denotes the set of 𝑁 items that
are most similar to 𝑣𝑗 and are rated by 𝑢𝑖.

⌢
𝑟 𝑖𝑗 = (

𝑁∑
𝑥=1

𝑠𝑥𝑗 × 𝑟𝑖𝑥) / (
∑

𝑣𝑦∈𝑁(𝑣𝑗 ,𝑢𝑖)

𝑠𝑦𝑗) (1)

A unique challenge here in providing a score sorted list of items,
is the fact that the individual scores to be aggregated for calculating
⌢
𝑟 𝑖𝑗 come from different lists for different items. Candidate item
can have a different set of 𝑁 nearest neighbors among those rated
by 𝑢𝑖 and this makes adaptations of classical top-𝑘 algorithms in-
efficient. Our theoretical results in [16] show that adapting classic
TA/NRA [12] algorithms which are known to be instance optimal
in the classical setting, leads to unpredictable performance due to
the above challenge. Therefore, we identify the problem of dis-
covering 𝑁(𝑣𝑗 , 𝑢𝑖) for all candidate items to be the costly step in
score prediction. For this purpose we propose a novel algorithm
called the Two Phase Algorithm (TPH) to overcome this challenge.

2.1 Two Phase Algorithm
A naive approach for finding 𝑁 nearest neighbors of a candidate

item 𝑣𝑗 in 𝑢𝑖’s profile is to retrieve similarities of 𝑣𝑗 to all (𝜇𝑖)
items rated by 𝑢𝑖. Going over all 𝜇𝑖 similarity values and finding
the 𝑁 highest ones can be done in 𝑂(𝜇𝑖𝑙𝑜𝑔𝑁) for one item. Thus,
the total cost is 𝑂(𝑚𝜇𝑖𝑙𝑜𝑔𝑁), for all items which can be costly in
practice if 𝜇𝑖 is large.

In order to design a more efficient process, we propose a new

global data structure, 𝐿 in place of the similarity matrix. Every
column of 𝐿 corresponds to one of the items. Items in each column
are sorted using their similarities with respect to the item indexing
the column. Thus, the 𝑗𝑡ℎ entry in the 𝑖𝑡ℎ column of 𝐿 is a pair
(item-id, sim), where item-id is the id of the 𝑗𝑡ℎ most similar item
to the 𝑖𝑡ℎ item. The second element of the pair is the similarity
between these two items.

The main intuition behind the two phase algorithm is the follow-
ing. Assuming that some 𝑁 ′ < 𝜇𝑖 nearest neighbors of a candidate
item 𝑣𝑗 are known, finding 𝑁 nearest neighbors can be done more
efficiently. This is regardless of whether 𝑁 ′ is greater or smaller
than 𝑁 . Suppose we know 𝑁 ′ < 𝑁 nearest neighbors of 𝑣𝑗 , then
finding the remaining ones can be done in 𝑂(𝜇𝑖𝑙𝑜𝑔(𝑁 − 𝑁 ′)). If
𝑁 ′ = 𝑁 , no further processing is needed. For 𝑁 ′ > 𝑁 , it again
takes 𝑂(𝑁 ′𝑙𝑜𝑔𝑁) to find the 𝑁 nearest neighbors.

All of the required similarity values for finding 𝑁 nearest neigh-
bors are in the 𝜇𝑖 columns of 𝐿 that correspond to rated items.
Therefore, we propose our two phase algorithm as follows. In the
first phase, we choose a similarity threshold and read only those
values from these columns that are above the threshold. This leads
to discovering a variable number of nearest neighbors for every
candidate item. Depending on the number of neighbors found for
each item, in the second phase we find the exact 𝑁 nearest neigh-
bors. For those items that we have managed to find some neighbors
for, the process will be more efficient as described earlier.

Figure 2 illustrates the process using a threshold value 𝜃 = 0.72.
In the first phase all of the entries above the threshold are read as
shown on the left side. In this example 𝜇𝑖 = 3. Notice that for both
cases of 𝑁 = 1 or 2, the process can be done more efficiently for
three out of four candidate items.

2.2 Optimal Threshold 𝜃
The cost of the two phase algorithm (𝐶(𝜃)) can be written as the

sum of three main components: (1) Cost of the first phase (𝐶1(𝜃));
(2) Cost of finding 𝑁 nearest neighbors when 𝑁 ′ < 𝑁 (𝐶2(𝜃));
(3) Cost of finding 𝑁 nearest neighbors when 𝑁 ′ > 𝑁 (𝐶3(𝜃)).

For instance, assuming the example in Figure 2 and 𝑁 = 2, 𝑣5
falls in the second category and 𝑣6 falls in the third category. While
for 𝑣4 and 𝑣7, we have already found their 2 nearest neighbors.
Using smaller 𝜃 results in greater 𝐶1 and 𝐶3 and smaller 𝐶2. This
is due to the fact that more similarity values will pass the filter and
make it to the second phase. On the other hand, 𝐶2 increases if
we use a larger threshold and the other two components decrease.
Therefore, there is a tradeoff between 𝐶1 and 𝐶3 on one hand and
𝐶2 on the other. Optimal threshold value is one that minimizes the
total cost of all components put together.

We perform a probabilistic cost-based analysis in [16], in order
to find the optimal threshold value. In [16], we fit a Gaussian prob-
ability distribution to the similarity values in the similarity matrix.
Using the cumulative density function, we calculate the probability
that a particular similarity value can result in one of the 𝑁 near-
est neighbors of another item. Our cost function provides an upper
bound on the expected cost of both phases together. We find the
optimal similarity threshold that minimizes 𝐶(𝜃). Moreover, we
theoretically prove that due to the tradeoff between cost compo-
nents, 𝐶(𝜃) always has one and only one minimum. We refer the
reader to [16] for more details, where we also empirically evaluate
our algorithm. Our empirical results confirm the reliability of our
theoretical probabilistic process for finding the optimal threshold
value which in turn leads to a consistently efficient performance
of the top-𝑘 recommender algorithm. Figure 3, shows part of our
experimental results that shows the effectiveness of the threshold
chosen using our method on the performance of the two phase al-
gorithm. 𝑇𝑃𝐻 takes as input a similarity threshold and performs

Figure 2: An example of running the two phase probe step using a prob threshold of 𝜃 = 0.72 and comparing it to naive algorithms

its two steps according to this threshold as illustrated by Figure 2.
In this experiment we vary this threshold from 0.2 to 1 increas-
ing by 0.1 in each step. We also measure the performance using
our theoretically found optimal threshold circled in the figure. We
find that our theoretically found value for all sizes results in a re-
liable performance. Particularly, in one case (𝜇 ≈ 1000) 𝑇𝑃𝐻
performed more efficiently using our value compared to the other
tested values. The shape of figures obtained by this experiment also
highlights the correctness of our results regarding uniqueness of the
minimum. We refer the reader to [16] for more details.

Figure 3: Performance of 𝑇𝑃𝐻 , using different values of 𝜃.

2.3 Updating the Similarity Matrix
Several measures have been proposed for calculating item simi-

larities the most popular of which is Pearson correlation. It is pos-
sible to provide guidelines in order to keep the similarity matrix
updated for most of the measures. Here we show the process for
Pearson correlation. Equation 2 shows how similarity between two
items 𝑣𝑖 and 𝑣𝑗 is calculated using Pearson correlation coefficient.
It measures the similarity between two items using only ratings of
users who have rated both items (𝐼𝑖𝑗).

𝑠(𝑖, 𝑗) =

∑
𝑢∈𝐼𝑖𝑗

(𝑅(𝑢,𝑣𝑖)−𝑟𝑣𝑖)(𝑅(𝑢,𝑣𝑗)−𝑟𝑣𝑗)√ ∑
𝑢∈𝐼𝑖𝑗

(𝑅(𝑢,𝑣𝑖)−𝑟𝑣𝑖)
2 ∑

𝑢∈𝐼𝑖𝑗

(𝑅(𝑢,𝑣𝑗)−𝑟𝑣𝑗)
2
, 𝐼𝑖𝑗 = 𝑣𝑖 ∩ 𝑣𝑖

(2)

When a new rating becomes available by 𝑢𝑖, there are 𝜇𝑖 en-
tries in the similarity matrix that need to be updated. Computing
all of these values from scratch can be costly. It is more efficient
to break down the Equation 2 into a number of components that
can be partially updated. Figure 4, shows these partially updatable
components. More specifically, four matrices are required which
have the same size as the similarity matrix and one vector main-

taining average rating of each item. Figure 4, shows how we can
rewrite an entry of the similarity matrix using these components.

Intermediate Matrices

' 'i j
r

New rating

Update statistics

Rewriting similarity matrix using intermediate matrices

Update similarities

Figure 4: Updating the similarity matrix with 𝑟𝑖′𝑗′ .

As an example it is well-known how to update the average of a
list of numbers iteratively. Given that we know the previous aver-
age rating 𝐶𝑛 of a user. When the new rating becomes available we
can update 𝐶𝑛+1 = (𝜇×𝐶𝑛+𝑟𝑖′𝑗′)/(𝜇+1). Here 𝐶𝑛 represents
the average rating of the user before the new rating is added to 𝑅
and 𝐶𝑛+1 is the updated average. While we know 𝜇 is the num-
ber of ratings of the user before the addition of 𝑟𝑖′𝑗′ . Performing
updates to the other components also follows a similar procedure.
Providing efficient strategies for performing these updates in terms
of computational cost, quality of results and memory requirements
is part of our ongoing work.

3. TOP-𝐾 PACKAGE RECOMMENDATION
As mentioned in the introduction, many applications like trip

planning and music list generation can benefit from having pack-
ages recommended instead of a ranked list of single items.

Let ℐ be the set of all items, for each item 𝑣 ∈ ℐ, we denote
the value of 𝑣 for the current active user as 𝑣𝑎𝑙(𝑣) which can be
obtained as the predicted utility or rating from the underlying item
recommendation algorithms. We denote the cost of 𝑣 as 𝑐(𝑣). The
cost may correspond to time, price, etc. For a subset of items 𝑃 ⊆
ℐ, we define the value of 𝑃 as 𝑣𝑎𝑙(𝑃) =

∑
𝑣∈𝑃 𝑣𝑎𝑙(𝑣), and the

cost of 𝑃 as 𝑐(𝑃) =
∑

𝑣∈𝑃 𝑐(𝑣). Let P = {𝑃 ∣ 𝑃 ⊆ ℐ} be the
set of all possible subsets of items, and given a user defined cost
budget 𝐵, a subset of items 𝑃 ⊆ ℐ is feasible if 𝑐(𝑃) ≤ 𝐵. We
can define our top-𝑘 package recommendation problem as follows.

DEFINITION 1. (Top-𝑘 Package Recommendation): Given a uni-
verse of items ℐ and an underlying item recommender system for
predicting values of items for the current active user, a cost bud-
get 𝐵, find top-𝑘 packages 𝑃1, ..., 𝑃𝑘 such that each 𝑃𝑖 is feasible

(𝑐(𝑃𝑖) ≤ 𝐵) and 𝑣𝑎𝑙(𝑃) ≤ 𝑣𝑎𝑙(𝑃𝑖) for all feasible packages
𝑃 ∈ P− {𝑃1, ..., 𝑃𝑘}.

For some applications, the order of items in the recommended
package is important, and in addition to the cost associated with
each item, we may also need to consider the cost between consec-
utive items. E.g., for trip planning, we need to consider the time
spent on traveling between corresponding POIs. In [10], for each
item pair (𝑣1, 𝑣2), we denote the cost of having 𝑣2 follow 𝑣1 in
the recommended package as 𝑐(𝑣1, 𝑣2), and given a set of items 𝑉 ,
we define 𝑠𝑐(𝑉) as the cost of the minimum walk which covers all
items in 𝑉 .

DEFINITION 2. (Top-𝑘 Sequence Recommendation): Given a
universe of items ℐ and an underlying item recommender system
for predicting values of items for the current active user, a cost
budget 𝐵, find top-𝑘 packages 𝑃1, ..., 𝑃𝑘 such that each 𝑃𝑖 is fea-
sible (𝑐(𝑃𝑖)+ 𝑠𝑐(𝑃𝑖) ≤ 𝐵) and 𝑣𝑎𝑙(𝑃) ≤ 𝑣𝑎𝑙(𝑃𝑖) for all feasible
packages 𝑃 ∈ P− {𝑃1, ..., 𝑃𝑘}.

As discussed in [9], when 𝑘 = 1, the top-𝑘 package recom-
mendation problem can be viewed as a variation of the 0/1 knap-
sack problem [7], where we have the restriction that items can be
accessed only in the non-increasing order of their value. This is
because of the way recommendations are made by the underlying
item recommender system. Similarly, the top-1 sequence recom-
mendation problem can be viewed as a variation of the orienteer-
ing problem [2]. Furthermore, because solving the top-𝑘 package
(sequence) recommendation problem optimally is NP-hard [7], we
need to consider approximate answers instead of exact ones, i.e., in
Definition 1 and Definition 2, for a package 𝑃𝑖 in the top-𝑘 package
set, instead of requiring 𝑣𝑎𝑙(𝑃) ≤ 𝑣𝑎𝑙(𝑃𝑖) for all feasible pack-
ages 𝑃 ∈ P − {𝑃1, ..., 𝑃𝑘}, we aim for 𝑣𝑎𝑙(𝑃) ≤ 𝛼 × 𝑣𝑎𝑙(𝑃𝑖),
where 𝛼 is the approximation factor.

Let 𝑐𝑠 be the access cost of retrieving the next highest-value item
from the underlying item recommender system and let 𝑐𝑟 be the ac-
cess cost of obtaining the cost (time, price etc) associated with an
item or an item pair. It is clear that total access cost of process-
ing 𝑛 items is 𝑛 × (𝑐𝑠 + 𝑐𝑟). Notice that 𝑐𝑠 and 𝑐𝑟 can be large
compared to the cost of in-memory operations: for both accesses
information may need to be transmitted through the Internet, and
for the sorted access, 𝑣𝑎𝑙(𝑣) may need to be computed. So well-
known algorithms for knapsack/orienteering which need to access
all items [7] may not be realistic, and instead we should minimize
the total number of items accessed by the algorithm and yet ensure
that high quality top-𝑘 packages are obtained.

In [9] we also show that without background knowledge about
the cost distribution of items, in the worst case, we must access all
items to find top-𝑘 packages. To facilitate the pruning of item ac-
cesses, we thus assume some simple background information ℬ𝒢
about item costs. We assume ℬ𝒢 is the minimum item cost for illus-
trative purposes, however, more sophisticated stats like histogram
can be easily incorporated.

In [9] and [10], we have shown that instance optimal algorithms
which correctly return approximate top-𝑘 packages and minimize
access cost are possible. However, these algorithms may need
to leverage on either pseudo-polynomial algorithm or exponential
time algorithm, which may lead to high computational cost. To
remedy this, we proposed more efficient algorithms which utilize
simple greedy heuristics to form a high quality package from the
accessed items. Similar to the instance optimal algorithm, this
greedy algorithm will always generate a correct approximation to
the optimal solution, however, it is not instance optimal among
all approximation algorithms with the same constraints and back-
ground information.

For many applications of package recommendation, the users
might have some additional constraints, e.g., for trip planning, the
user may require the returned package to contain no more than 3
museums. To capture these constraints in our algorithms, we can
define a Boolean compatibility function 𝒞 over the packages under
consideration. Given a package 𝑃 , 𝒞(𝑃) = 𝑡𝑟𝑢𝑒 iff all constraints
on items in 𝑃 are satisfied. We can add a call to 𝒞 in the proposed
algorithms after each candidate package has been found. If the
package fails the compatibility check, we just discard it and search
for the next candidate package.

It is worth noting that many constraints studied in the previous
work such as [3] and [8] are restricted classes of boolean compat-
ibility constraints. However, depending on the application needs,
for scenarios where only one specific type of constraint is consid-
ered, e.g., having one item from each of 3 predefined categories,
more efficient algorithms like Rank Join [14] can be leveraged.

4. SUMMARY AND OPEN PROBLEMS
In this paper we presented TopRecs+, a functional and practical

recommender system with package recommendation capabilities.
While we have investigated some initial efforts in realizing our en-
visioned next generation recommender system [16, 9, 10], much
remains to be done for realizing our vision. Our future work on
TopRecs+ includes implementing efficient strategies for updating
the similarity matrix, approximating top-k results with probabilistic
guarantees, adding support for model-based methods in Toprecs+
and taking into account quality measures such as diversity for pack-
age recommendation.

5. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TKDE, 17(6):734–749, 2005.

[2] Chandra Chekuri and Martin Pál. A recursive greedy algorithm for
walks in directed graphs. In FOCS, 2005.

[3] A. Angel et al. Ranking objects based on relationships and fixed
associations. In EDBT, 2009.

[4] B. Sarvar et al. Item-based collaborative filtering recommendation
algorithms. In WWW, 2001.

[5] C. Yu et al. It takes variety to make a world: Diversification in
recommender systems. In EDBT, 2009.

[6] G. Koutrika et al. Flexrecs: expressing and combining flexible
recommendations. In SIGMOD Conference, pages 745–758, 2009.

[7] H. Kellerer et al. Knapsack Problems. Springer, 2004.
[8] M. De Choudhury et al. Automatic construction of travel itineraries

using social breadcrumbs. In Hypertext, 2010.
[9] M. Xie et al. Breaking out of the box of recommendations: From

items to packages. In ACM RecSys, 2010.
[10] M. Xie et al. Comprec-trip: A composite recommendation system for

travel planning. In ICDE, 2011.
[11] P. Resnick et al. Grouplens: An open architecture for collaborative

filtering of netnews. In CSCW, 1994.
[12] R. Fagin et al. Optimal aggregation algorithms for middleware. In

PODS, 2001.
[13] S. Amer-Yahia et al. Group recommendation: Semantics and

efficiency. In PVLDB, 2009.
[14] J. Finger and N. Polyzotis. Robust and efficient algorithms for rank

join evaluation. In SIGMOD, 2009.
[15] D. Hansen and J. Golbeck. Mixing it up recommending collections of

items. In CHI, 2009.
[16] M. Khabbaz and L. Lakshmanan. Toprecs: Top-k algorithms for

item-based collaborative filtering. In EDBT, 2011.
[17] A. G. Parameswaran and H. Garcia-Molina. Recommendations with

prerequisites. In RecSys, pages 353–356, 2009.

